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ABSTRACT
fhe awther

In this paper we discuss the Dirichlet problem
delte omeqe greatee than omeel Curly L‘”‘J“’

3
(1) -Ju = £(u) in Y, uj 0 in §, u=0 on PY¥
mf.-m'f’
under the hypotheses of sublinearity at 0 and superlinearity at + *. The
dominating theme throughout the paper is that of a supersolution of (1). We 24
prove theorems on the existence of two solutions whenever problem (1)
possesses a supersolution, using topological degree arguments or variational
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methods according to the type of growth of £ at + $. We—aiso—treat the

questions of existence of supersolutions and their actual construction.

Schwarz symmetrization techniques are used to obtain supersolutions from

solutions of associated symmetrized problems. ( T —
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SIGNIFICANCE AND EXPLANATION

Boundary value problems of the type
(nH -Au = f(u) in 2, u>0 in R, u=0 on 30 ,
arise in a variety of situations, like nonlinear diffusion generated by non-
linear sources, thermal ignition of gases, quantum field theory, gravitational
equilibrium of stars, etc. In many applications the nonlinearity f is sub-
linear at 0 and superlinear at . This class of problems is discussed
here, and existence of two solutions of (1) is proved. The interaction of
f with the first eigenvalue of (-A,H;) plays an important role in the
analysis. The Schwarz symmetrization is used to establish existence of super-
solutions of (1). The supersolutions are shown to yield the existence of at

least two solutions via topological degree arguments and variational methods.
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ON PAIRS OF POSITIVE SOLUTIONS FOR A CLASS OF
SEMILINEAR ELLIPTIC PROBLEMS

Djairo G. de rigueiredo' and Pierre-Louis Lions"

INTRODUCTION. The question of existence of positive solutions for semilinear

elliptic problems of the type

(1) ~Au = £f(u) in Q,u=0 on 3 ,

depends very strongly on the behavior of the function £ : R+ + R at 0 and
at + o, Here £ denotes a smooth bounded domain in RN, N 22, and f is
always assumed to be locally Lipschitzian. We distinguish two special classes
of such problems, which have been extensively studied in recent years: the
sublinear problems and the superlinear ones. See, for instance, the review
papers (1], (2], [3]. The sublinear problems are characterized by the
inequalities

(2) 1im inf ‘:” >A, and lim sup

8+0+ grte

£(s) < A .
8 1

1
Here ), = X,(R) denotes the first eigenvalue of -A in H,(R). The super-

linear problems are characterized by the inequalities

(3) 1im sup 48 ¢ A, and lim inf £(s) , Ay
s+0+ s gr+o 8

In the present paper we propose to discuss problems which are sublinear

at 0 and superlinear at + «, Namely,

(4 1m inf £8) 5 3 ana Lim ine E8) 55

We allow these limits to be + w», For instance, this is the case for the
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first limit in (4) if €£(0) > 0. And the second limit in (4) is + = if ¢

grows more rapidly than linearly. We remark that these types of problems have
been studied in the case of f(0) > 0 and £ convex by several authors, for

1 instance, Gelfand [4], Joseph-Lundgren [5), Crandall-Rabinowitz [6], Bandle

{71, Mignot-Puel [8]. Also some problems of this type are discussed in Lions

{2]. 1In this paper we treat a much larger class of nonlinearities. The

doninating theme throughout the paper is that of a supersolution of (1). The

main highlights being: (i) the question of existence of supersolutions, (ii)

their actual construction, (iii) how they can be obtained from solutions of

the symmetrized problem by the use of Schwarz symmetrization techniques, (iv)

existence theorems for problem (1) that possesses a supersolution.

In Section 1 we present results on the existence of two positive

solutions for problem (1}, one of the basic assumptions being the existence of

a strict supersolution. Here topological degree techniques and variational

methods are used to treat different classes of nonlinearjities. Condition (4)

puts no restriction on the growth of f at + ®., To obtain the first

solution of (1) this is no serious problem. Indeed, if we know that a

supersolution w of (1) exists, it follows from (4) that a subsolution u

can be found, with u € w. And then the monotone iteration method applies to

yield a solution of (1), which is in fact the minimal solution. However, if

we are interested in deciding whether or not there are more solutions we need

some sort of compactness in our problem. More precisely, if we plan on

treating the problem by topological degree arguments, a priori bounds on the

solutions are in order. If we are to use variational methods, then a Palais-

Smale condition is required on the Fuler-Lagrange functional assocliated with

(1) In both cases these properties will be consequences of the conditions

assumed on f as far as its growth at + ® {is concerned. We discuss these

points in Section 1. More general results are obtained in Section 4.

-2-




The existence of a supersolution of (1) is connected with how far below
the line X1s the graph of £(s) goes. We propose to discuss this matter

with some detail in Section 2, showing how to actually construct a super-

solution in some examples. In Section 3 we use the idea of Schwarz symmetri- 5

zation to obtain statements about the existence of a supersolution of (1) from

v

the knowledge of a solution of (1} in the case of a ball.

In Section 4 we invoke some results of (9] and prove a fairly general
theorem on the existence of pairs of positive solutions. In this way we are

g able to treat a class of nonlinearities f more general than those of Section

1. Under these less restrictive assumptions on f it is not clear that one

has a priori bounds on the solutions of (1). Also the corresponding Euler-

i Lagrange functional apparently does not satisfy the Palais-Smale condition.
However we are able to proceed via an appropriate truncation of the

. nonlinearity f.
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1. EXISTENCE THEOREMS. In this section we establish results on the existence

of positive solutions for the Dirichlet problem

(1 ~Au = f(u) in Q, u=0 on 30 ,

where £ 1is a smooth bounded domain in RN, N 2 2, and the nonlinearity f
satisfies different sets of conditions, as specified in the sequel. The
following conditions will be always assumed:

+
(f1) £ : R + R 1is locally Lipschitzian,

(£2) 1im ing 281, A
8+0+
(£3) 1im inf 281, A,
g+400 8
£(s)
(f4) 1lim = 0, with 1 ¢ o € (N+2)/(N-2), if N > 3
g*+e g :

or 1 <Cog<®», {if N=2,
We remark however that condition (f4) is not needed when we want just to state
the existence of one solution. Its importance appears when we have to prove
the existence of two solutions, since in this case a priori bounds on the
golutions or a Palais Smale condition is needed. Besides the above stated
conditions on £, the following ones will be useful in treating the problem
by topological Aegree arguments. The conditions next have to be assumed only
in the case N > 3:

-8
(£5) 1im sup ——————-—’f;’) F;:) <

> 0, with 8 e [0,2N/(N-2)), Fl(s) = f: £
g4 8 f(8)

(f6) Q is convex or f(s)s-p is nonincreasing for s > 0, with p = (N+2)/(N-2).
Assumptions (f4), (£f5) and (£f6) are used in Theorem ! below only to
assert that there exist a priori bounds on the positive solutions of (1), or

more generally, a priori bounds on positive solutions of a certain para-

metrized family of Dirichlet problems. And for that matter we rely on the . 4




results of de PFigueiredo-Lions-Nussbaum (9]. So Theorem 1 is true if (f4),

(£5) and (f6) are replaced by another set of conditions that insures the
existence of such bounds. We remark however that these assumptions are not
too restrictive. For instance, (£f5) is satisfied if o0 in (f4) is

< N/(N-2) or if f£(s) = csP, with ¢ >0 and 1 < p < (N+2)/(N-2). It has

been established in (9] that more general conditions on § and f also yield
to a priori bounds on the positive solutions of (1). Therefore we see that
large classes of nonlinearities may be allowed. For the question of a priori
bounds on positive solutions of (1) we refer also to the work of Brézis-
Turner [10) and Gidas-Spruck [11]).

A function w € c2’®(f) 1is said to be a supersolution of (1) if
~Aw > £f(w) in R and w> 0 on 3Q. A supersolution which is not a
solution is said to be strict. Now we state our first existence result.

Theorem 1. In addition to (£f1) - (£f6), assume that (1) possesses a strict

supersolution w. Then (1) has two solutions 0 < u, < uy, and u, is the

minimal solution.

Remarks. 1) Conditions (£1) - (f6) are not sufficient to insure the
existence of a positive solution of (1). 1Indeed, take any f such that

f(s) >as, for s >0 and a > A,. Clearly 0 is the only possible
solution of (1). Hence we see that the graph of f£(s) has to cross the
straight line A1s. And the question is to determine "how much" it has to be
below X,s, so that a positive solution of (1) exists. It is well known that
if f(s) = 0 for some s > 0 then a positive solution of (1) exists under
hypotheses (£1) and (f2). We shall see that the graph of f dJdoes not have to
go below that far. So the interesting case is f£(s) > 0, for all s > 0.

2) The limits in (£f2) and (£3) can be + *, This will be the case, for A 1

instance, if £(0) > 0 and f£(s) behaves like csP for large s, with ;

%
4
=
]
4

¢ >0 and p > 1.




3) The requirement that the supersolution be strict is essential, as we show
next. Let g : R+ + R+ be a continuous strictly convex function, with

g(0) > 0, and consider the eigenvalue problem:

(2) =Au = Ag{u) in R, u=0 on 30 .

It is known (see for instance, Crandall~Rabinowitz [6]) that there exists
0¢2 ¢w such that l2)X has a minimal solution u, for 0 <X« A*, and
no solution for X > k.. We recall that this branch of minimal solutions is
obtained by a continuation arqument using the implicit function theorem.
Moreover if g is such that one can prove an a priori bound on this branch of
minimal solutions for 0 € X <« 1‘, then such a branch actually reaches

A =2". That is, (2), has also a minimal solution u , for A = A", one
can in fact prove that such a uA, is the unique solu:ion of (2)1.. Now we
claim that “A' is the only supersolution of (2)A’. Indeed, suppose that

v 1is a strict supersolution of (2) ,. Then v > u, and we have

A A

* *
=A(v=u ) > X (g(v) =~ g(u )) > X g'(u [ )(v-u )
A A A A

where one of the inequalities above is strict in a set of positive measure, as
a consequence of v # u , and the strict convexity of g. Consequently, the

first eigenvalue of the eigenvalue problem

-8 - A"g'(u Jlu=pu in 8, u=0 on 3
A

is positive. However, this implies, via the continuation argument, that there
exists A > 2" such that (2)x has a solution. This contradicts the
maximality of At

Proof of Theorem 1. Let us denote by X the Banach space of c'-functions in
5 which are 0 on 3, endowed with the usual C‘-norm. Define f for

negative s as f£(s) = £(0). The solutions of (1) with this extended f are

the same as the solutions of the original problem (1). For in either case the




|
;\

solutions are all positive. Let us define the one-parameter family of

functions

(3) £,(8) = ut(s) + (1-u)(As + 1), 0 € u< 1

+

where ) is some fixed number > X1 and s denotes the function which is

8 for a8 20 and 0 for s < 0, In view of assumptions (£f1), (£3), (f£4),
(£5), (£6), there is a constant c, > 0 such that

(4) Iulx < <,
for all eventual solutions of the problems

(5)u -Au~- fu(n) in 2, u=0 on 931, 0<€u<1 ,

Now let k > 0 be such that f(s) + k8 is increasing for s e [0,lwl R
Let X, = (-A+k)-1(£u(')+k-). More precisely, let us define K : X +Lx as
follows Knv = u where u is the solution of the Dirichlet problem

(6) ~Au + Jku = fu(v) +kv in @, u=0 on 9 .

The mapping Ku so defined is compact. From the Schauder estimates it

follows that there is a constant c, > 0 such that

(7) lxnle < 0 YV EX, 0<v<Ew .

As a consequence of (f2) we see that there is € > 0 such that e¢1 is a
subsolution for all prohlems (S)u. Here ¢1 denotes a positive eigen-
function corresponding to A1(Q). Algo we may take 80‘ <w in 9. 1t

follows from the maximum principle that any solution u of (S)H such that

u > 501 in 1 is indeed u > e¢1 in Q@ and %%-( € ;%l on 3. Now
consider the bounded open set
du 3¢1
0 ={uex;: lulx <c tc, 1 u > e¢1 in Qs v CE€E3v on |y |,

where c, and c, are the constants defined in (4) and (7), respectively,
and 801 is the subsolution said above. By the foregoing remarks it follows
that 0 ¢ (x-xu)(ae). So the degree d(r-xu,e.o) is independent of

ue [(0,1]. Clearly the degree d(I-Ko,0,0) = 0 saince (S)g has no solution.




Hence
d(I-K1,9,0) =0 .

Now let us conesider the following open subset of ©0:

8' = {fu@b :u<w in 9 %% > %%' on 30} ,

and we claim that d(I-Kt,G',O) = 1, Once this is proved, it follows that
d(I-x’,QYU',O) = -1. So (5)4, vwhich is the same as (1), has two solutions
;1 e 6' and u, e 6\3‘, which are not necessarily ordered. So we have to
proceed further in order to complete the proof of the theorem. Let v =
min(w,u,). It follows that v is in w;'°(n), €¢, < v and
-Av > £(v), in D'(Q)) .

So the iteration monotone method yields the existence of a solution u of
(1), with 0 < u, < u, and u,; is the minimal solution of (1). To £,
the proof we have to prove the above claim. To do that observe that K, maps
8' into 6'., LlLet u, € 8' and consider the constant mapping C : 6' > 6!
defined by Clu) = uge By the convexity of 6', it follows that I -~ K, is
homotopic to I - C in ©6' and d(I-K1,9',0) = 4(1-¢,9',0). But this last
degree is trivially equal to 1. The proof is complete. D

Our next result provides existence of two positive solutions for (1)
under a different set of assumptions on the nonlinearity f. We shall drop
conditions (£f5) and (£f6), and replace them by (f7) below. Hence a priori

bounds on the solutions are not available any longer. Condition (f7) is

needed only when N > 3 and the o in (f4) is > (N+1)/(N-1).

sf(s8)=-8F(s) 8
(£7) 1lim inf >0, with 8> 2 and F(s) = [ f .
gt s2g(gy 2/ (B 0

Theorem 2. In addition to (£f1) - (f4) and (£7), assume that problem (1)

possesses a strict supersolution w. Then (1) has two positive solutions.
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Remark. Assumptions (f4) and (£f7) are used to assure that the Euler-Lagrange ‘}

functional associated with (1) satisfies the Palais-Smale condition. At this

point we rely on the work in [12]. We remark that (f7) is satisfied for

instance if one assumes the condition introduced by Ambrosetti and Rabinowitz

- - . [ .
T N P TN . 3 A I NI NI Ao St

in [13]). Namely, that there are numbers 6 > 2 and 8y > 0 such that
0F(s) < sf(s) for s > 8, So functions f behaving at + ® 1like csP,
with ¢ >0 and 1 < p < (N+2)/(N=-2) do satisfy (f7). Hence we see that
there are classes of functions which satisfy both (£f5) and (£f7). However it

is apparent that there are functions satisfying one of these conditions but

not the other.

Proof. Define f for negative s8 as f(s) = £(0). Let us consider the
functional ¢ : H; + R defined by

1 2
o(u) = 5 1% - Few), F(s) = [of -

T T 1N o AT R, A, ~

In view of hypotheses (£f1), (£3), (f4) and (£7), this functional is of class

C1 and satisfies the Palais-Smale condition. The critical points of ¢ are ]

precisely the H;-solutions of (1). 1In view of (£f4) these solutions in fact

belong to c2'°(35. This follows readily by a bootstrap argument in the case

< (N+2)/(N=-2). The case when 0 = (N+2}/(N-2) is

when ¢ in (£f4) is

treated by more sophisticated arguments due to Brézig-Kato [14], see also

[12]. Now we use the fact that (1) possesses an ordered pair of a sub~ and a

supersolution: e¢1 <w for € > 0 sgufficiently small. Then it is known

(see [15]) that there is a point 4 in the interval [e¢1,w], which is a

local minimum of &. WNow, either (1) u, 4is a strict local minimum of ¢, or

(ii) it is not. Hence at this point the proof bifurcates to cover separately

these two possibilities. Let us first assume (i). Define the function

g: QxR+*R by g(x,s8) = g(s* + u,(x)) = f(uy(x)). The functional

1
Y. Ho + R defined by




Y =3 jw)? - exw

where G(x,s) = P(s* + uy(x)) = f.(u.‘(x))l+ = Plu,{x)),

Smale condition. 1Its critical points are the H1 =golutions of

0
-Av = £(v  + ) - fu)

and it follows that they are > 0 a.e. (R). So a non-zero critical point v
of Y provides a second nontrivial solution of problem (1): U, ®= vV + u,. To
show the. Y has a non-zero critical point it is enough to prove that 0 is

a strict local minimum of Y. (The Mountain Pass Theorem then completes the

proof). PFor that matter we observe that there is € >

(*) Y(v) >0 for all 0 < vl 1 <e
H

This is a simple consequence of the identity:

¥(v) = %] 199712 + ogv’ + u,) - 0

and the fact that uy is a strict local minimum of &.

there is a > 0 such that ¥(v) > a for (vt 1 =g,
H

this is not the case. Then there exists Vn # with v § = ¢, and

’(vn) + 0. Since v - v we get Y(v) < 0. In view of (*) above we see -

that v = 0. So passing to a subsequence we see that f G(x,vn) + 0, which

implies that Y(vn) > i-ez for n sufficiently large.

the fact that !(vn) + 0.

o

satisfies the Palais-

0 such that

Next we claim that

In fact, suppose that

n H‘

But this contradicts

Now we proceed to consider alternative (ii). That is, suppose that given

L > 0 such that &(u) > 0(u1) for lu-u1l <€

such that

ol

inf{d(u) Iu-u'lH1 =g} = 0(u1)

Let (wn) be such that lmn-u1l " €, O(wn) »> 0(u1)

H

follows from (£4) that ¢ is weakly lower semicontinuous. 8o O(Mn) + $(w),

there is an 0 < e < eo

and wn - w, It

which gives &(w) = 0(u1) showing that w is a minimum of ¢ in the ball

-10-
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Iu-u1l 3 € €g+ Ve see readily that w # Uy Otherwise, supposing © = u,,
H
we come to a contradiction passing to tt limit in the identity below:
1 2 1 2

¢ ) 5[ 190w~ )|" + / Vo * Vu, - 5/ 1Vu,l J Flw) .
(Recall that the first term in the right side of the previous equality is
€2/2-) Consequently @ is another critical point of ¢, since
0 < fu-u,l <€ < ¢€j D
Remark. If f£(0) > 0 the above proof can be considerably shortened. Indeed,
at the point where it bifurcates we have only to apply the strong form of the
Mountain Pass Theorem, as proved by Rabinowitz [16]); see also a simple proof

in (15]. The critical point so obtained is clearly nontrivial. We also

remark that the above proof in the case of alternative (ii) can also be done

using Ekeland variational principle as in [15).




2. The case when 1 is a ball. Suppose that 2 is the open ball

Bp = {x e R“ : Ixl ¢ p}. In this section we show how to construct super-~
solutiong of problem (1), and discuss some examples. Let us begin by
considering the following linear Dirichlet problem:

(8) -Av = yv + 1 in B1, v=0 on 331 .

where 0 < yu < A1(B1). Let us denote by vu the solution of (8). We know

that vu is positive, radially symmetric and its maximum Mu is assumed at

the center of the ball. That is

L vu(O) - max(vu(x) : x € 81} .
These functions vu and their corresponding maxima, Mu , play an important
role in the questions of existence of solutions for semilinear problems like
(1) Problem (8) can be solved explicitely. Since v(x) is a function only
of the radius r = |x|, (denote it again by v(r)), it has to be the
solution of the following two-point boundary value problem
(9) e Elyiaw et im0, v = v =0
In the cagse N = 2 this equation becomes

vt o+ i-v' + yv = -1

which is the Bessel's equation of zero order. So the solution of (9) is

Jo(/E r)

wtn =1 - 1]

a0
where Jg denotes the Bessel function of zero order. Recalling that

J(0) = 1, we obtain a simple expression Mu in this case. Namely

1 1
M - - [ - 1] .
oo ao(v"ﬁ)

In the case N ? 3, we make the substitution w(r) = v(r):p, where p =

(N=2)/2. S0 ®w is a solution of

2
w"+‘:7cn' + (u'P'{)w--rp. w(0) = w(1) =0 ,
r




which is given readily in terms of Bessel's functions of order p. Thus the

solution of (9) is

J_(Yu r)
v, (o) = % [ -~ 1], p = (N=2)/2 .
L3 (M)
P
Recalling that r'pJp(t) * (2Pr(p+1)1" as r + 0, we obtain
p/2
PR p— -1,  p=(m-272 ,

uow zPr(p+1)ap(/E)
which of course is valid for all N > 2. 1In the case N = 3, the expressions

of vu and Mu simplify to more elementary functions. Namely,

v, (r) = % [sin(/g r) _ 1], M, = % ( /p 1] .
r sin /F sin /;

From the former expressions we see the following properties of Mu which will

be useful in the sequel. Recalling that 2

(r'PJp(r)zpr(p+1) -1+
[2(2p+2)]-1 as r » 0, we conclude that
Mg = (20”7 .
0
It is easily seen that the first eigenvalue 11(31) of =~A¢ =2¢ in By,
=0 on 381 is the square of the first positive zero vp of Jp(r) :
-y
A1(B1) vp. Consequently Mu + 4o ag pu + A1(B1). Since Mu < Mu, for
0< <y < 11(51) we have a pretty good idea of the graph of Mn.

Proposition 3. Suppose that the function f : R* + r* satisfies the

following condition: there are numbers s, > 0 and 0 < u < A1(B1) such

that

100, V0<sgs<s

(£8) f£(s) € us + H“ 0 °

Then problem (1) with Q = 31 has a strict supersolution.

Remark. A special case of (f8) is

(£8)y f£(s) < 2Ns,, V0 < s < 8g ¢ for some 845 > 0.




Proof. The solution w of the linear Dirichlet problem

(8*) -Aw = yw + C in 81, w=0 on 381

is such that 0 € w < u"c, for any given constant C > 0. We see that w is
a supersolution of (1) provided us + C > £(s) for all 0 € s < Muc. But

this follows from (£8) taking C = M;1s 0

o.
Remark. In the case when {Q = Bp, the analogue of condition (f8) is: there
are numbers s; > 0 and 0 <y < 11(89) such that

-2 -1
f(s) Cus +p M s, V0<g< s .
u02 0 0

Remark. The idea of using linear Dirichlet problems like (8') to obtain a
supersolution of (1) has been used before by several authors. 1A special case
of Proposition 3 for increasing functions f was obtained by Bandle [23]
using this method.

Examples. 1) f(s) = Aes. Consider the nonlinear eigenvalue problem

(10) -Au = Ae” in B, u=0 on 3B, .

It is known that there is a A > 0 such that (10) has solutions for A < by
and no solution if ) > X. What can be said about the value of A? In the
case wvhen N = 2, problem {(10) can be solved explicitly. This was already
proved by Liouville in 1853, see Bandle [17]. 1In this case it is seen that
X =2, Proposition 3 above provides lower bounds for X in any dimension

N. Por instance, (f8), in the case of N = 2, gives X > 4/e = 1.47. uUsing
0

(f8) we can improve this bound and get

tn(1+uM )
(1) X > max|———H-: 0 < u <A B}

1]
which in the case of N = 2 gives % > 1.8043. 1In the case of N = 3, (fe)o

gives X > 6/e = 2,21, while estimate (11) gives A > 2.8652.

2) £(s) = X(1+a.)8, a,8 > 0. We see then that the problem

8

«Au = ) (1+au) in 81. u=0 on 3B ,

has a solution for each X < pY where




- I ——

/8

3= DIX{;%_ [(1+uuh)1 -1 1 0< <« X1(B1)‘ .
u

3. The case of a general domain @ . In this section we use Schwarg

symmetrization for two purposes, First, we state a condition on f (depend-
ing only on the volume of ) which insures the existence of a strict super-
solution of (1) for a general domain . Second, we prove that the existence

of a solution of (1) for the ball with same volume as £ implies the

existence of a solution for general fl. This result is useful in constructing
strict supersolutions of (1) as we shall see.

Let us begin by reviewing the basic facts about symmetrization, which
will be used in the sequel. More about symmetrigzation can be seen in Hardy-
Littlewood-pPdlya [18], Pdlya-Szegd [19] and Bandle (17]. Let u : RN + R be
an L1-£unction. We define the Schwarz symmetrization u' (also called the
symmetric decreasing rearrangement) of u as the function u. : Ry + R such
that

meas{x € X" : |u(x)| > t} = meas{x € R" 3 w(x) > t}, vVe>o .

It follows that u‘ is radially symmetric, positive and nonincreasing with
respect to |x|. And one sees that
u (x) = inf(t > 0 : meas{x € R® ulx)| > ¢} < mN'xIN] )

where @ _is the volume of the unit ball in Y.

N
The following properties of u. will be needed here

M e oy e

p N * P N *
(I) If uveL (R), 1€<p<€®», ¢then u €L (R ) and lul P =y | p’
L L

*
(1) 1f ue B (RY), then u" e n'(rY), ana 1Vu 1 , ¢ IVl .
L L

The proof of (I) is given in [18] or [19]). An elementary proof of (II) can be ¢
seen in [20]. Now let §} be a smooth bounded domain in Ry. let us denote

»
by 1 the ball centered at 0 and with the same volume as f{}. Then, it

b AN

v
4

follows from (I) and (II) that




L}
(I1I1) k1(9 ) € x1(n).
The next result is proved in Lions (21]:
(IV) Consider the following two linear Dirichlet problems:
~Au=2Au+ 1 in R, u=0 on 98 ;
* L
~Av=iv+ 1 in @, v=0 on oN
* » *
where 0 < X ¢ A1(Q o Then u € v a.e. ().
(V) If u is a Lipschitz continuous function in §, then u* is

*
Lipschitz continuous in R . See [17]. The next result is due to Talenti

[22). A simple proof can be seen in [21). We remark that in fact a more

general result is true, as proved in both [21] and (22].
(VI) Let h be a Lipschitz continuous function in §l. Consider the
following two Dirichlet problems:
=Au = h in O, u=0 on 3IN ;
* * *
-Av = h in  , v=0 on 3 .
* *
Then u < v a.e. ().
Now we give a gimple sufficient condition on f for the existence of a
strict supersolution of (1).

Proposition 4. Consider (1) for a smooth bounded domain R in R, and let

*
2  be the ball in ) with the same volume as . Suppose that the function

£ satisfies the following condition: there exist numbers 8g > 0 and

*
0< < X1(Q ) such that

-1
M 2 8y vV0<s<s

up

£(s) < us + p~2 o ¢

»
where p 4is the radius of the ball R . Then the problem (1) hag a strict

-ug!rsolution. 4

Proof. Proceed as in the proof of Proposition 3, using now (I) and (IV)

above. 0

Now let us show how a solution of (1) can be obtained from a solution of

~16-




L ] * L J
(12) «dv = flv) in R ,v>0 4in %, ve=0 on N .

Theorem 5. Let f : R* + R+ be a nondecreasing function satisfying hypotheses
(£1) and (f2). Suppose that (12) has a solution v. Then problem (1) has a

h : minimal solution u an € v, where v 1is the minimal solution of (12).

L}
~ L ]
Proof. Let us denote by 01 the eigenfunction corresponding to A 1(9 ),

~2
which is > 0 and ]¢1-1. Choose € >0 and & > 0 such that u = €é,

is a subsolution of (1), Vo * 601 is a subsolution of (12) and
»*

Now we define iteratively the sequences (un), (vn) by

-Aun” -f(un) in 8 un+1 =0 on 90 ,

- -
--»Avn_.‘1 = f(vn) in @ vn” =0 on M .

*
In view of (VI), u1 < Vo where v1 is the solution of

» [ at
-Av1-f(u°) in § ’ w1-0 on 99 .

So -Aw1 < f(vo) - -Av1, which implies by the maximum principle v, > Ve

Congequently
*
(13)1 \11 < v1 .
By induction, it follows that
»
(13), u, < LA

But, since problem (12) has a solution, it follows that (v ) converges to

*)

= fu <
@ [ )
L ny

lvnl w* S0 (u)) also converges to a function u which is the minimal

L
solution of (1). And from (13) we obtain 3' <v.

X in the cz'“-norm. Now from (I) it follows that Iunl

The following results show how Theorem 5 can be used to establish the

o b A e

existence of strict supersolutions of (1).

+ +
Corollary 6. let f, : R * R be _an increasing function satisfying hypo-

el o

theses (f1) and (£2), such that f£.(s) > f(s) for s in some interval

(0,e), and f1(l) > £(s) for all s e R'. Suppose that the problem !




* *
~Ay = f1(v) in 2, v=0 on 90

has a solution. Then (1) possesses a strict supersolution w.

Proof. Indeed, w is the solution of the problem
=Aw = f1(w) in @, w=0 on df
given by Theorem 5. O

Corollary 7. let £ satisfy all the hypotheses of Theorem 5. Moreover f

*
is C'. Suppose that the first eigenvalue of ~-duw ~ £'(v)jw = Xw in @,

»
w=0 on N is positive. Then problem (1) has a strict supersolution.

Proof. By the implicit function theorem the problem
* *
-0z = f(z2) +€z in 2, z=0 on 9N
has a solution 2z. So by Theorem 5, the analogous problem in I has also a
solution, u. Clearly u 1is a strict supersolution of (1). O
*

We have seen above that the existence of a solution in the ball @
implies the existence of a minimal positive solution in Q. 1In fact, using
the full generality of [22] - see also [21] ~, we may improve this argument as
follows. Assume that f is nondecreasing, (f1) holds and that there exists
v solutior of:

* * *
(12) ~Av = f(v) in Q ,v>0 in 1, v=0 on 3N .
«®
Then let aij(x) - aji(x) €L () satisfy: (aij(x)) I a.e. in @ and

N

consider the following problem:

(x)gf—-r(u) in 2, u>0 in 8, u=0 on 3R .

2
ax a1j 3

i

If 1lim inf £He) > A (=~ 32— (a se-ﬁ. H1(9)), then the preceding problem
es0s t 1 g A3 o

has a minimal solution u such that: 1

*
u ¢ ! ?

where v is the minimal solution of (12). ’




4. EXISTENCE RESULTS WITH NEITHER A PRIORI BOUNDS NOR PALAIS-SMALE. In this

section we consider once more problem (1) under the basic assumption that a
strict supersolution exists. Again conditions (£1) through (f4) are
assumed. However we shall assume neither condition (£5) nor (£7).
Consequently one does not know whether the solutions of (1) are a priori
bounded. Also the corresponding Euler-Lagrange functional does not clearly
satisfy the Palais-Smale condition. Thus the methods of Section 1 do not
apply directly. We found it useful to rely on the results of (9]. It is
proved there that the bound

(14) Wl < ko . for all solutions of (1) ,
L (3R)

holds if in addition to (f1), (£3) and (f4) one assumes condition (f6). Also
we recall {(c.f. [9]) that the condition below in conjunction with (£f1), (f£3)
and (f4) gives inequality (17) used in the proof of Theorem 8 presented next.
(£9) 9Q = P1 U Pz, where P1 and Pz are closed and satisfy -
(i) at every point of I‘1 all sectional curvatures of P1 are bounded
away from 0 by a positive constant;
(1i1) there is a point x5 in RN such that (x-x5,n(x)) < 0 for all
x e Pz, where n(x) denotes the outward unit normal to 92 at x.

Theorem 8. In addition to (f1) - (£f4), assume that (1) possesses a strict

supersolution w. Suppose that one of the conditions (f6) or (f9) holds.

Then (1) has two solutions 0 < uq < Uy

Proof. i) We first observe that (£3) implies that there exist u > x1 and
R > 0 such that

(15) £(s) >us , for all s> R .

Also it follows from (f4) that given € > 0 there is ce > 0, such that

(16) £(s) < e.(11'0-2)/“‘-2) .

Ce , for all s> 0 .




If (£6) is assumed we have from [9] that (14) holds, with k, depending only

on 4 and R given in (15). Using Pohozaev's identity (cf. [9]) we see that

there exists a constant k, > 0 depending only on u and R, such that
N-2 2
(17) T [q ITal® - [q Flu)| €k,
If we agsume (f9) we also obtain (17) from the results of [9]. So in any case

we have that (17) holds true for all solutions of (1).

1
ii) By the results of Section 1 there is u1 e Ho in the interval [0,w]

which is a local minimum of
1 2
O(v) = 2 fﬂ vl ® - fn F(v) .

1
Consider the functional V¢ : Ho + R defined by

1 2
vv) =5 Jq 19917 = [ 6tx,v)

where G(x,8) = P(s" + u (x)) = flug(x))s’ = Flug(x)). Tet Co = lwl _ + 1.

L

It follows from (£3) that there is a v0 e c'(ﬁ}, depending only on Cor ¥

and R, such that Vg > 0 in & and w(vo) € 0. Let

c, = lu1 + volLQ +1 and b = max{W(tvo) : 0<t< 1} .

Then b depends only on f on the interval [o,c2] where C2 = max(co,c1)
and on 4 and R.
iii) Wow if v is a critical point of ¥, we see that v > 0 and u = Vv +u,

is a solution of (1). If we suppose that VY(v) € [0,b], then it follows from

(17) that

where Cy depends on k1, b, ce and f restricted to the interval [O,CO].

Consequently C, depends only on U, R, ce and f restricted to the inter-
val (o,czl. Therefore we modify f outside of the interval [0,max(C,,Cq)],
keeping the same 4, R and Ce' Moreover this modification is done in such a

way that the new f satisfies the assumptions which enable us to use the

-20-

TR Y T A R v L vt

AT

e




LR e

results of Section 1. Thus the critical point v of the modified ¢

obtained by mountain passing satisfies ¢(v) € [0,b). It is then readily seen

that u = v+uq; 1is the second solution of (1) we are looking for. a

%
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